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Letters

Comments on “Radiation from Curved Dielectric

Slabs and Fibers”

J. A. ARNAUD, SENIOR MEMl?Efi, I13EE

In the above paper,l Lewin gave an expression for the bending

loss of a dielectric fiber with circular cross section. I have shown [1]

that the bending loss of arbitrary optical guides can be obtained in

a simple manner when the field of the straight guide is known. The

purpose of this letter is to show that the results of the two theories

are in agreement, except fora factor of 2.

In thk comparison only the fundamental scalar field$oo = HEu

is considered. zItis assumed that the field in the bent fiber is similar

to that of the straight fiber. Because a bend with radius of curvature P

is equivalent to a linear gradient of refractive index I/p, it is not

difficult to show that the preceding condition holds when p >> a’/~2,

where a denotes the fiber radius and A the wavelength. The free

wavenumber in the fiber material is denoted k = (oJ/c)n, and that

in the surrounding medium, or cladding, is denoted k, = o/c. The

elastooptic coefficient of the fiber material is assumed to be zero.

The bending loss is given in [footnote 1, eqs. (55) and (56)].

Let us simplify Lewin’s result by assuming that the normalized

frequency F= (k’–k/)’/’a of the fiber (sometimes denoted V)

is large, e.g., F > 3. In that case, the modified Bessel functions

K,(y,) in [footnote 1, eq. (55)] can be replaced by (7r/%0)1/2X

exp (—vo), where VO = (k.z — k.2)1/Za, and k, is the axial wave-

nmnber of the straight fiber, k, =k. The quantity denoted zo in

footnote 1 is the first zero of Jo(z), zo = 2.4,..., in the present

approximation, and ●. = el = 2. Thus the bending loss can be

rewritten
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z I have shown in [1, Part II] that Biernson and Kinsley’s dispersion

formula [2], applicable to step index fibers with small differences of re-

fractive index between core and Cladding, follows from the scalar Helm-

holtz equation. In some recent works, the notation LPP,.+l where H’
stands for “linearly polarized, ” has been used in place of #Pa.This alter-

native notation may be misleading because the polarization of scalar

modes is arbitrary. Furthermore, it is not consistent with that com-

monly used for other types of optical fibers (e.g., square-law graded-

index fibers) and hence my preference for the notation ~~., also used in

similar problems of quantum mechanics.

in Fig. 1 is

*(u) =zO(#12k112aF)-l exp(-Fy2/2a2)
k,, = (@/#Z)(l /FZa)(y jp/a)-1/2ex p(2g0)exp(- P/PO’) (1)

where p denotes the radius of the fiber axis, and the critical radius

~.’ =;(k%3/y(?). (2)

Let us further rearrange this result and introduce the quantity

where lcq is the azimuthal wavenumber at the outer boundary of the

fiber, with radius p +a. Because of conservation of the angular

phase velocity of the wave, k,p = I%P(P +a). With the approxima-

tiona<<pwe can therefore write

exp (–p/po’) = exp (–p/PO) exp (–2yO) (4)

where p~isthe critical radius definedin [1]

PO= ;k#/s3.

Thus thetermexp (2Yo) in (1) cancels out. Intheterminfrontof

the exponential in (1), it is permissible to replace yO by F. The

expression of the bendhgloss (innepers/unit length) ofamoversized

round fiber givenl is therefore approximately

k,;= (x#/#’)(1/F2a)( Fp/a)-ll’ex p(-p/pO). (5)

The approach used in [1] consists in evaluating the coupling

between the fiber lmode and the ra.chation modes. The result is

given in the following with a slightly different notation. Let $. (z,y)

denote the unnormalized scalar field of the straight fiber. The nor-

malized field is defined as

[1 1
-[2

+(?/) =$.(0,!/) k+mz(x,y) dzdy (6)

where $ has dimension kllj; Next we defined the spettral density of

the field distribution along the v axis

[/
@(ku) = (1/2rr) ‘m 1

.2_m+(y) exp(–ikw)du . (7)

The bending loss follows from the general expression [1]

\

+- .
k.i = ~sexp (–p/P,) #’(k~)exP (–psk&2/ks2)dkv. (8)

—0

For the fundamental mode of an oversized circular rod (with

arbitrary polarization), the normalized field along th; y axis shown
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Fig. 1.
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where, as before, ZO = 2.4.. . denotee the first zero of JO(*). Thus

@(kM) == (x#/r)k-’F-’ expkuka’F)/F). (lo)

Ifwesubstitute (lO)in (8), the bending lossisobtained [l]

k.; = (@/2#/2)(1 /F2a)(F’p/a+k .’a2/F)-’12exp (–p/p,). (11)

This result is just half that in (5) because, for large values of p,

the second term in thetbird parenthesis in (11) can be neglected.

Snyder and White [3] found a result that agreea with (11). An in-

teresting comparison with experimental results has been recently

reported in [4], which, however, is not directly applicable to the

present discussion.

In conclusion, the results [1]’ coincide, except for a factor of 2.

Lewin’s method is, in principle, more rigorous than the one that

I proposed. The latter, however, is applicable to more complicated

structures. For instance, it is applicable to slab loaded fibers [1].
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